Wayne K. Dawson
Summary
The purpose of this model is to approximate the features of the fundimental parameter as a function of the sequence dependence in the Flory polymer swelling model. The details of these parameters and how they are obtained (theoretically) is explained in the flory model.
For denatured polymers, the rootmeansquare (rms) endtoend separation distance can be obtained experimentally from the radius of gyration. The parameter expresses the dependence of the rms endtoend separationdistance as a function of the number of residues in the sequence. Because this property can be found for each measured length, if follows that every point of the sequence exhibits a rmsseparation distance that only depends on the number of residues that lie between a given pair of residues and . The separation distance for each order pair of indices in a given polymer chain is ; where, at the extreme ends, and . The properties of dependent on the specific conditions of the polymer and solvent which in turn influence the second and third virial coefficients.
The dependence of the endtoend separation distance on sequence length is expressed by the parameter where
where ( ) is the rms distance for a Gaussian polymer chain structure (with the mertomer separation distance), is the number of residues separation index and , and is the persistence length.
The exponent can be expressed as a function of through the following relationship
where expresses the weight of this parameter as a function of length.
The behavior of in typical RNA conditions is shown in Fig 1. In the figure, the RNA tends to swell slightly at short lengths (due to the exposure of RNA to solvent) and it become more globular at very long lengths where it can encounter more of itself if it becomes globular. The region labeled indicates the critical length where this transition occurs. The parameters indication the coexistence region that lies between and .
The advantage of this method is that you can obtain and control the properties of this polymer swelling effect without having to solve for the second and third virial coefficients ( and ). This model does not replace the Flory model as much as it circumvents the difficulties of solving nonintegral sixth order polymomial equations. The virial coefficients are very strongly dependent on the persistence length (), and therefore, finding good parameterizations depends on both and the .
